Analisis Regresi Linier Berganda

5 min read

Langkah Pengujian :

#Langkah 1 : Buka aplikasi SPSS anda dan klik menu “Analyze > Regression > Linear” seperti pada gambar dibawah ini.

regresi linier berganda spss
Via : statistics.laerd.com

#Langkah 2 : Isi kotak dialog Regresi Linier (Perhatikan gambar!)

regresi linier berganda spss 2
Via : statistics.laerd.com

# Langkah 3 : Pindahkan variabel dependen, VO2max, ke dalam kotak Dependent: dan variabel independen, usia, berat badan, detak jantung, dan jenis kelamin ke dalam kotak Independent(s): menggunakan ‘logo tombol panah Kanan’, seperti yang ditunjukkan pada gambar di bawah ini :

regresi linier berganda spss 3
Via : statistics.laerd.com

#Langkah 4 : Klik pada icon tombol “Statistik”. Setelah itu anda akan melihat tampilan menu Regresi Linier Statistik. Pada Menu ini, beri centang menu Confidence intervals level dan isi dengan angka 95% seperti gambar dibawah ini.

regresi linier berganda spss 4
Via : statistics.laerd.com

#Langkah 5 : Klik Tombol “Continue” Kemudian lanjutkan dengan memilih tombol “OK”. Setelah proses ini anda akan mendapatkan hasil output nilai Regresi Linier Berganda seperti yang ditunjukkan pada tabel dibawah ini :

tabel output
Via : statistics.laerd.com

Maka data hasil prediksi yang diperoleh adalah :  VO2max = 87,83 – (0,165 x usia) – (0,385 x berat badan) – (0,118 x detak jantung) + (13,208 x jenis kelamin).

Sehingga kesimpulan yang dapat diambil adalah Regresi berganda dilakukan untuk memprediksi VO2max dari jenis kelamin, usia, berat badan dan detak jantung.

Variabel-variabel ini secara statistik memprediksi VO2max secara signifikan, F(4, 95) = 32,393, p < .0005, R2 = .577. Keempat variabel ditambahkan secara statistik signifikan terhadap prediksi, p < .05.

Contoh Soal Regresi Linier Berganda

Setelah mengetahui berbagai hal dasar tentang regresi linier berganda pada penjelasan di atas, berikutnya Anda bisa mencoba mengaplikasikannya dalam contoh soal yang kami sajikan berikut ini.

a. Terdapat data tentang IQ dan tingkat kehadiran sepuluh mahasiswa teknik elektro Universitas Brawijaya yang diperkirakan mempengaruhi nilai UAS mereka. Pada tabel data tersebut, (1) Buatlah persamaan regresi linier berganda, kemudian (2) Variabel  yang mana memberikan pengaruh lebih besar terhadap nilai UAS ?

Mahasiswa IQ

(X2)

Tingkat kehadiran (%)

(X1)

Nilai UAS

(Y)

1 110 60 65
2 120 70 70
3 115 75 75
4 130 80 75
5 110 80 80
6 120 90 80
7 120 95 85
8 125 95 95
9 110 100 90
10 120 100 98

Pembahasan :

  1. Persamaan regresi : Y = 25.047 + 0.6705X1 – 0.00343X2
  2. Perhatikan outputnilai pada persamaan regresi diatas! Didapati nilai b1 lebih besar dibandingkan dengan nilai b2. Nilai b1 menandakan kemiringan X1 (kehadiran dikelas) dan b2 menandakan kemiringan X2 (IQ). Dalam hal ini dapat disimpulkan bahwa presentase kehadiran dikelas lebih berpengaruh daripada  IQ mahasiswa teknik elektro UB.

Kelebihan dan Kekurangan Analisis Regresi Linier Berganda

Penggunaan metode regresi linier berganda untuk melakukan prediksi dengan menemukan garis pola terbaik antara variabel dependen dan independennya. Meski demikian, metode ini tentu memiliki nilai lebih dan kekurangan. Berikut adalah keunggulannya:

  1. Dapat menguji model keseluruhan maupun parameter-parameter individual.
  2. Mudah untuk diimplementasikan
  3. Kemampuan memprediksi dengan persamaan yang bisa melihat segala kemungkinan hubungan sebab akibat semua variabel.

Selain keunggulan yang disebutkan di atas, ada pula beberapa kekurangan dari metode ini, yaitu:

  1. Sebab-akibat pada model sifatnya hanya searah dan tidak boleh timbal balik.
  2. Tidak bisa digunakan apabila relasi antara variabel dependen dan independennya tidak linier ataupun korelasinya rendah.

Kesimpulan : “Uji regresi linier berganda sangat membantu untuk mengetahui pengaruh secara serempak  (simultan)  baik  kualitas maupun  kuantitas dari  variable-variabel  bebas terhadap variable tak bebas. Hasil model persamaan regresi dapat dipergunakan sebagai pedoman untuk memprediksi hubungan antar variabel diluar data yang dijadikan sampel dalam suatu populasi.

Materi Belajar Statistika Lainnya :
Contoh Uji Hipotesis Contoh Uji Normalitas
Contoh Uji T Contoh Uji Koefisien Korelasi

Demikian penjelasan tentang regresi linier dan jenis-jenisnya yang bisa wiki elektronika paparkan. Ini adalah penjelasan ringkas sehingga untuk lebih memahami lebih dalam tentang metode dalam statistika ini, Anda perlu untuk mencari lebih banyak referensi terkait.

2 Replies to “Analisis Regresi Linier Berganda”

Leave a Reply

Your email address will not be published. Required fields are marked *